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A Generalized Field Theory 
Charged Spherical  Symmetric Solution 
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Three solutions with spherical symmetry are obtained for the field equations of 
the generalized field theory established recently by Mikhail and Wanas. The 
solutions found are in agreement with classical known results. The solution 
representing a generalized field, outside a spherical symmetric charged body, is 
found to have an extra term compared with the Reissner-Nordstr~m metric. The 
space used for application is of type FIGI, so the solutions obtained correspond 
to a field in a matter-free space. A brief comparison between the solutions 
obtained and those given by other field theories is given. Two methods have 
been used to get physical results: the first is the type analysis, and the second 
is the comparison with classical known results by writing down the metric of 
the associated Riemannian space. 

1. INTRODUCTION 

The author, in collaboration with Mikhail [Mikhail and Wanas (1977); 
referred to hereafter as (I)], has constructed a generalized field theory using 
a space admitting absolute parallelism. The same authors [Mikhail and 
Wanas (1981); referred to hereafter as (II)], have examined the solution of 
the field equations of the proposed theory in the absence of feedback effects, 
and the results obtained are found to be in complete agreement with 
corresponding classical known results. In addition, these results predict a 
type of interaction between gravitational and electromagnetic fields. In the 
same paper (II), the authors have classified, in a covariant way, spaces 
which can be used as models in any application of the theory to problems 
in physics or astronomy. 

In a recent paper [Wanas (1981); referred to hereafter as (III)], the 
author has examined the solution of the field equations using a space of 
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the type FOGI,  which represents the absence of the electromagnetic field 
but presence of a gravitational field which is not strong outside a spherical 
symmetric body. The metric of  the real domain of  the associated Riemannian 
space is found to be identical with that of  the Schwarzschild exterior metric. 

The aim of  the present work is to explore more exact solutions using 
spaces of  more general type. The space which we are going to use for this 
study is of  type FIGI .  This space is capable of  representing a generalized 
field outside a spherically symmetric charged body. All notations used here 
are the same as those used in the previous papers (I), (II),  and (III) .  

2. STATIONARY S P H E R I C A L  SYMMETRIC sPACES 

The structure of  spaces admitting absolute parallelism with spherical 
symmetry has been studied by Robertson (1932). The tetrad vectors A ~ 

i 

(i,/., = 0, 1, 2, 3) defining the structure of  such spaces, as given by Robertson, 
can be written in coordinates of  Cartesian type in the following form 
(~,/3, a ~0) :  

h ~ = A, 
0 

A ~ = D x  ~ 
o (1) 

A ~ = E x  a 
a 

A ~ = F x ~ x  ~ + $ ~ B  + S e ~ x  ~ 
a 

where A, B, D, E, F, S are functions of  r (=x~x  ~) for the stationary case, 
and e ~  v is skew with respect to all indices where e123 = 1. As shown by 
Robertson (1932), E, F can be made to vanish using some coordinate 
transformations,  so the tetrad giving the structure of  the space can be written 
in the following form: 

A ~  A 
0 

A ~ = D x  ~ (2) 
0 

A ~ = 6 ~ B +  e ~ x ~ S  
a 

As stated by Robertson (1932), improper  rotation can be admitted if 
and only if 

S = O  (3) 
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This implies a definite physical  meaning according to the present theory 
(I), and will be discussed later. For  the present work,  we are going to s tudy 
the case (3) for which (2), in spherical polar  coordinates ,  has the fol lowing 
form: 

~ 0 1 2 3  
i 

o 1 1 A 
2 
3 

0 

i 

0 

0 

Dr 0 0 

B B sin ~b 
B sin 0 cos 4~ -- cos 0 cos 4~ 

r r sin 0 

B B cos ~b 
B sin 0 sin ~b -- cos 0 sin 4~ 

r r sin 0 

B 
B cos 0 - -  sin 0 0 

r 

(4) 

3. T H E  F I E L D  E Q U A T I O N S  

The field equations to be solved (I) are o f  the form 

E ~  = 0 

where E~,~ is a second-order  nonsymmetr ic  tensor  given by 
d e f  

E ~  = g ~ L -  2 L ~  - 2 g ~ C r  - 2C~C~ 

- 2 g~o C~ A ~ + 2 C ~'b~ - 2 g ~  A ~ I ~  
+ + + +  

and 
d e f  

L~  = A~LA;~- c,~c~ 

d e f  

L = g  L.~ 

d e f  
E 

d e f  
A t = F  ~ _ F  ~ 

d e f  

A ~  = g ~ A ~  

(5) 

(6) 

(7) 
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The vertical bar denotes absolute differentiation using the nonsymmetric 
connection F~(=A~A~,~). The (+) and the ( - )  signs are used in the usual 

manner to distinguish between the two types of absolute derivatives. 
g,~(=A~ A~) is a symmetric tensor. 

4. TYPE ANALYSIS AND STRENGTH OF THE FIELDS 

Owing to the lengthy calculations of the model (4), e~pecially when 
calculating the tensors of this section, the author has used an algebraic 
manipulation program to calculate these tensors and to check other calcula- 
tions. The author wrote the program in REDUCE2 and it was run in MTS 
(Michigan Terminal System) at NUMAC (Newcastle). 

Before solving the field equations, it is useful to carrY out the type 
analysis for the space (4) [see (II), Table I]. This analysis gives an idea of  
the sort and the strength of  fields that a space of given structure can represent. 
The tensors which are responsible of the type are found to have the following 
properties for the space (4) 

R ~  ~ O, 

F ~  ~ 0, 

T•v-•0 
z~=o 

A = 0  

(8) 

where the tensors in (8) have been defined in the previously mentioned 
papers [cf. (II)]. 

If we use Table I in (II) we find that the tensors in (8) match the type 
FIGI. This means that the space of structure (4) can represent, at most 
(without any further condition) a generalized field which is not strong 
outside a spherically symmetric charged body, Of course one can find 
solutions corresponding to tetrads of  less generality, using (4). 

5. SOLUTIONS OF THE FIELD EQUATIONS 

If  we use (4) to evaluate the tensors (7) and substitute into (6), then 
the field equations (5) will give rise to the following set of  differential 
equations (A'-= dA/ dr, A"=- d2A/ dr2, . . .) 

B2 + D2 r2 [ OZ r 2 ] 
A2 b(r)+---~- l(r) =0  (9) 

Dr r D2r ~ 
--~ [ b(r)+--~-  l(r) ] =O (10) 
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B '2 2 B2 ~_r(B'+A' ~ A'B' D2r 2 
\ B  n / - 2 " - - ~ - - l ( r ) - - ~  --=0 (11) 

D2r2[ - A" D" 4 ( a '  D ' ]  

B 

A '2 D '2 (A'D' A'B' WD'I]  
-2A2  D 2 + 3 \ A D  AB + B D ] J  

A" B" A '2 B'z _ I (A '+B ' )  
+ - - + - - - 2 A Z  B2 =0  (12) A B r k A  B] 

where 

B '2 4 B' B" 
2 - -  b(r)=3 B2 r B B 

B '2 8 B' B" 2 D' B'D' 3 
l(r) =5  

B 2 r B 

(13) 

We are interested only in solutions which can give some physical 
meaning. So, we are going to look for such solutions in the following 
manner. Consider the generalized electromagnetic potential C,  [cf. (I)], for 
(4). This vector has the following nonvanishing components: 

C~ =-A- ~ B D (14) 

A' B' 
C, = ~ - +  2 ~- (15) 

The vanishing of Co only will give rise to the vanishing of the electromagnetic 
field, since C1 is a function of x 1 only and consequently it could not give 
rise to any skew tensor. This can be achieved by taking D = 0. The vanishing 
of C~ alone will not affect the existence of the electromagnetic field. This 
can be done by taking A' /A=-2(B' /B) .  We are also interested in the 
solution where both Co, C1 vanish. 

Although those are not the only solutions which can be obtained, yet, 
for reasons which will appear in due course, and for the time being, we are 
not going to study other solutions. 

5.1. The solution C o = 0  

Since D is one of the unknown functions, the condition D = 0 will 
affect the type of the space. In the present case (D = 0), the tensors (8) are 
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now found to be such that 
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R ~  # 0 

T.~--0 

A = 0  

F,~. = 0 

Z . ~ = 0  

(16) 

So, unless other conditions are found from the solution, (16) will match 
the type FOGI.  This represents only a gravitational field, which is not strong, 
outside a spherical symmetric body [see (II) ,  Table (I)]. 

The equations to be solved [(9)-(12)] are now reduced to ( D = 0 )  

[ B ' \  ' B '2 4 B' 

2i__  --I/A'+B'\ B ' [  A' B ' \  = ~  (17) 

A ' \ '  A '2 [ B ' \ '  I { A '  B ' \  - -~  

The solution which satisfies (17) is found to have the form 

1 
B =  

al(1 + rn/2r) 2 

l + m / 2 r  
m=o~2 - -  

1 - m / 2 r  

where oq, a2, m are constants. Since the model is spherically symmetric, 
we need A~->8~ as r->oo. This can be achieved if ~ =O~2= 1. Then the 

i 

solution can be written in the following form: 

l + m / 2 r  
A =  

1 - m / 2 r  

1 
B - ( 1 8 )  

(1 + m/2r)  2 

D = 0  

This solution has been obtained before ( I I I )  using a simpler model 
and is found to represent the gravitational field outside a spherical symmetric 
body as expected from the type analysis. 
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5.2. The Solution Co = 0 and C1 = 0 

In this case, the differential equations to be satisfied are (17) together 
with the condition (C~ = 0) 

A' B' 
- - =  - 2 - -  (19) 
A B 

As shown before the solution (18) has been found to satisfy the set (17). 
It can easily be shown that by using (18), (19) cannot be satisfied unless 
m = 0. So the solution will be reduced in this case to 

A = I  

B = I  

D = 0  

(20) 

Using these values we found that the tensors given by (16) all vanish. This 
matches the type FOGO which is the flat space-time of special relativity. 

5.3. The Solution (71 = 0  

This condition (C1 = 0) will not affect the type, i.e., the tetrad (4) will 
preserve its general type FIGI. The field equations to be solved are now 
(9) [-=(10)], (11) and (12) together with the condition given by (19). 
Eliminating l(r) between (9), (11) we get 

(B_B)' A'B' I ( B ' _ A ' ~  
+ 74B + -  = 0  (21) r \ B  A]  

Using (19) to eliminate A' /A  in the last equation, we get by integration 

1 
B 2 (22) 

(o,3+ #/r 2) 

Substituting from (22) into (21) we get 

A = a,( a 3 + fl /r 2) (23) 

where 0~3, 014, ~ are constants. 
Using (22) into (9) we get for D a first-order differential equation 

which can be written in the form 

2DD'q 3t~3r2+4fl D2= fl2-2fla3rZ 
. 0/3r3 + ~ r  ot3r3(ot3r2 + ~ )  2 
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The solution of  this equation is found to be 

D 2 - ~ (o~3r2q-/~) 3/2"[" ,y(2o~3r2-k- ~) 
r4(a3r2+/3 ) (24) 

where y is constant. The solution given by (22), (23), and (24) is found to 
satisfy (11) if 

/3 
Y.-- o~32 

and since the present tetrad is spherically symmetric we require, as stated 
before, A ~ -~ 6~ as r+oo.  So we should take 0~3 = 0~4 = 1, consequently y =/3. 

i 

The solution now can be written in the form 

1 
B z 1 + ~ / r 2  (25) 

D 2_ ~ ( r2+~)3 /2+~(2r2+~)  
r4(r2q- ]3) 

which satisfies (12) without any further condition. This solution is found 
to represent (as expected from the space type) a generalized field outside 
a spherically symmetric charged body. This will be discussed in the following 
section. 

6. PHYSICAL INTERPRETATION AND COMPARISON WITH 
OTHER THEORIES 

As has been shown in Sections 4 and 5 the type analysis can be used 
to gain some physical information about the problem concerned even before 
solving the field equations. To summarize, three solutions have been 
obtained: the solution (18), giving rise to FOGI,  represents a gravitational 
field outside a spherical body; the solution (20), giving rise to FOGO, 
represents the empty space-time of special relativity; while the solution 
(25), with the type FIGI,  represents a generalized field outside a spherical 
charged body. 

6.1. The Metric  AnaLogy 

Now to support the previous physical information and to gain more, 
we are going to write the metric of the real domain of  Riemannian space 
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associated with (4) for each of the solutions obtained. This metric can be 
defined (III) as 

2 ds = g ~  dx ~ dx ~ 

where 

and 

g ~ = ~ .  ei~.~i~, (26) 

e,= ( 1 , - 1 , - 1 , - 1 )  

(1) Using (26), (4) we can write for the solution (18) the metric 

ds 2 ( 1 - r n / 2 r )  2 
(1 + m - - - ~  dt2 - (1 + m/2r)4(  dr2 + do "2) (27) 

where do -2= r 2 dO2+r2sin 20dc~ 2, which is identical with Schwarzschild 
exterior metric in its isotropic form. This solution has been obtained before 
(III) using a simple model, so we are not going to discuss it. 

(2) For the solution (20) we get the metric 

d s  2 = d t  2 - ( d r  2 -Jr d o  "2) (28) 

which is the empty space-time of special relativity. This is exactly what has 
been given by the type analysis. 

(3) For the solution (25) we get the metric [A = 1 /B  2 as a consequence 
of (25)] 

ds 2 = B2(B 2 - D2r  2) dr2+ 2Dr  dr dt - B-2(  dr 2 + d~r 2) 

Using a coordinate transformation of the form 

f D r  T =  t + F ( r ) .  F ( r ) -  B2(f12_D2r2 ) dr 

1. 

B 

The last metric can be written into the form 

dR 2 
ds 2 = y(  R ) dt 2 R 2 dO 2 -  R 2 sin z 0 dq52 (29) 

~(R) 

where 

R ~2 2/32 
y ( R ) =  l -  + -~ R4 (30) 
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To give a physical  meaning  for the constants  a, 13 o f  the solution (25), 
let /3 = 0. Then  (30) will take the form 

Og 
y ( R )  = 1 - - -  

R 

and (29) will be o f  the form of  Schwarzschild exterior metric and we can 
take a = 2m where m is the mass o f  the object in relativistic units (c = G = 1 ). 
We can surmise tha t /3  is propor t ional  to the charge o f  the body. 

This suggestion is suppor ted  if we consider  the case when R is large 
enough so that  we can neglect quantities o f  the order  ( l /R4) .  In this case 
(30) will take the form 

4/3 
y (R) -~  1 R R 2 (31) 

which can be compared  with the wel l -known Re i ssner -Nords t r6m metric 
for a charged point  mass, viz., 

ds 2= y ~ ( R )  dt 2 . . . .  

with 

From (31), (32) we get 

d R  2 

T1(R)  
R 2 dO 2 - R 2 sin 2 0 d~b 2 

2rn K e  2 
TI(R) = 1 - - - + - -  (32) 

R 2R 2 

K e  2 
a = 2m, /3 = - - -  (33) 

8 

So, for (29), y ( R )  will take the form 

2rn K e  2 K 2 e  4 
y ( n )  : 1 - ~ - + : - - ~  q- (34) 

32R 4 / ( A N -  

Taking m = G M / c  2, K = 8 ~ r G / c  4 we get ( M  is the mass in grams) 

2 M G  47rGe 2 2 ~ 2 G 2 e  4 

y ( R )  = 1 -  c--5-R--+ c4R-----~-~ c8R4 
(35) 

6.2. Comparison with Other Field Theories 

In compar ing  the present  theory (I) with other  field theories, in similar 
cases, the fol lowing results have been found:  
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(i) The same results, from the metric point of view, of general relativity 
has been obtained from the present theory in the case of spherical symmetry, 
i.e., the solution (18) with the metric (27). 

(ii) As has been shown above, the metric (29) associated with the 
solution (25) is found to be similar to the Reissner-NordstriSm metric far 
from the object, so the present theory agrees with Einstein-Maxwell theory 
in the case of spherical symmetry with two main differences: 

(a) Near the object, the present theory gives an extra term (over 
Einstein-Maxwell theory) in the gravitational potential, i.e., the last term 
in (34). 

(b) All solutions obtained in the present work, are exterior solutions, 
i.e., with vanishing material-energy tensor [defined in (I)], as is clear from 
the general type FIGI of (4). This is not surprising since fields represented 
by (4) are weak (as clear from the type), and as has been shown (II), weak 
fields make no contribution to that tensor. 

(iii) Einstein and Mayer (1930) have used a tetrad of the same type 
as (4) to test the so called Einstein-Cartan theory of absolute parallelism. 
However, Blackwell (1932) has shown that the solution obtained does not 
tend to the Schwarzschild exterior solution after eliminating the electric 
charge. The present solution (25) satisfies this requirement as has been 
shown in Section 6.1. 

(iv) Mikhail (1964) has used a tetrad identical with (4) to solve the 
field equations of his unified field theory. The only solution which has been 
obtained represents pure gravity. From the present theory, solutions corre- 
sponding to both gravity and electromagnetism have been obtained. 

(v) Tonnelat (1966) has discussed a spherically symmetric solution (of 
Papapetrou type) of the Einstein nonsymmetrie theory. She noticed that 
(p. 99) as the distance from the object becomes large, the solution does n o t  
agree with Reisner-Nordstrrm metric. She expected that the results of any 
unified field theory can be reduced to that of general relativity combined 
with Maxwell's theory at large distances. This is exactly what has been 
shown for the present theory in Section 6.1. 

7. DISCUSSION AND CONCLUSION 

The space used in the present application (4) has spherical symmetry, 
and as shown before with vanishing material-energy tensor. Physical prob- 
lems with spherical symmetry are: the gravitational field outside a spherically 
symmetric body;  a generalized field outside a spherically symmetric charged 
body; and the trivial case of empty space-time. The three solutions obtained 
are found to represent the previously mentioned problems. For this reason 
we are not going to examine possible other solutions. We expect other 
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solutions of  (9)-(12), if any, to be either identical to the solutions already 
obtained or to deviate sharply from classical known results. In this last case 
we cannot use classical results for comparison. We can compare only with 
the solutions obtained in the present work. So we consider the present work 
as a necessary step for the future work. 

All solutions obtained in the present work, correspond to (3) S(r )  = O. 
As stated in Section 2 this corresponds to improper  rotation. It has been 
found that if  S(r )  ~ O, the type of the space will be changed, giving rise to 
strong fields within a material distribution. 

Tonnelat  (1966), when discussing the Einstein nonsymmetric theory, 
has expected that the unified laws contain additional terms which represent 
interaction of  the gravitational and electromagnetic fields. These terms, as 
she stated, can give rise to a creation of  a magnetic field by a purely material  
distribution (Blackett effect). However, as shown in Section 6, the solution 
(25) tends to that of  Schwarzschild when /3 = 0 (or e = 0). This is correct 
from the point of  view of  relativity theory (the metric only). But we have 
found that /3 = 0 corresponds to F,~ r 0. This is not surprising from the 
point of  view of a unified field. For, as the electromagnetic field has its 
contribution to the gravitational potential [extra terms due to /3  in (34)], 
we expect the gravitational field to contribute to the electromagnetic poten- 
tial as well (and of  course to F~) .  This type of  interaction has been predicted 
before (II)  in studying weak fields. This interaction may give rise to an 
effect similar to Blackett effect when the model (with e = 0) is rotated. 

In summary the three solutions obtained in the present work are in 
agreement with classical known results except for an extra term in the case 
of  a generalized field. Two methods can be used to get the physical meaning: 
the first is to use the type analysis (II)  to get some physical information 
about the geometrical space used. The secor/d is to write the metric of  the 
real domain of  the associated Riemannian space, in order to compare with 
classical known results. The second method cannot be used unless the 
solution of  the field equations is already obtained. 

There remains for further investigation: the possibility of  other solutions 
of  (9)-(12); the solution in the case of  strong fields ( S r  and the 
possibility of  prediction of  a phenomenon like the Blackett effect. 
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